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Abstract

The generation of high scattering order neutron scattering cross sections consistent
with high-fidelity simulations remains an area of active research. Popular options
include generating cross sections from continuous energy Monte Carlo calculations or
from a deterministic neutron transport calculation with high-fidelity tabulated cross
sections. Both options present challenges.

Monte Carlo simulations can naturally process continuous energy cross-section data
and allow for the general description of anisotropic neutron scattering given a scattering
law. However, Monte Carlo simulations are inherently related to particle weighting
and it has been suggested that this may be unacceptable for generating high-order
neutron scattering cross sections. Deterministic neutron transport calculations can
easily calculate high-order moments of the flux to appropriately calculate higher-order
neutron scattering cross sections but are generally limited by discretization of space,
energy, and angle.

In this work, the trade-offs between generation of high-order neutron scattering cross
sections via Monte Carlo and deterministic neutron transport methods are investigated.
The methods implemented in the Monte Carlo computer program Serpent 2 and the
deterministic fast reactor neutron cross section generator MC2-3 are compared. Cross
sections resulting from these methods are used in Rattlesnake, a deterministic neutron
transport code developed by Idaho National Laboratory, and results are compared to a
reference continuous energy Monte Carlo calculation.

Whereas previous work investigating the effects of anisotropic neutron scattering
has focused on light water reactor simulations, this work focuses on high-order neutron
scattering cross sections as they relate to fast reactor simulations. To investigate the
consequences of the Serpent 2 and MC2-3 methodologies, a test problem is developed.
The test problem is a one-dimensional geometry with fast reactor materials designed to
demonstrate deep penetration and exacerbate the effects of high-order neutron scattering.

Based on the results of the deep penetration test problem, it is concluded that P3
neutron scattering cross sections are sufficient to describe anisotropic scattering in
fast reactor materials. Any neutron scattering of order higher than P3 offers negligible
change in the eigenvalue of the test problem. Additionally, it is determined that the
methodology as implemented in Serpent 2 is applicable for generating high-order
neutron scattering cross sections through at least P3 in fast reactor materials.
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1 Introduction

While modern computers allow for continuous energy Monte Carlo neutron transport calcu-
lations, reduced-order models remain popular. Multigroup neutron transport and multigroup
neutron diffusion simulations are commonly used in transient, coupled multiphysics, and
optimization calculations where high-fidelity models remain computationally prohibitive.
However, these reduced-order models require data, such as multigroup cross sections, that
are problem specific. Therefore, a method for generating multigroup cross sections for use in
reduced-order simulations that is consistent with high-fidelity simulations remains an area
of active research.

For reduced-order simulations, material cross sections must be discretized in space, energy,
and angle. Discretization in space and energy is often straightforward and relies on grid-
based techniques. However, discretization in angle is often more challenging. The angular
dependence of multigroup cross sections is often addressed by projecting the continuous form
of the neutron scattering cross section given by a scattering law onto Legendre polynomials.
It is precisely this projection of the multigroup neutron scattering cross section onto Legendre
polynomials of that is investigated here.

A variety of methods have been developed for the generation of high-order neutron scattering
cross sections using both deterministic and Monte Carlo techniques [1–4]. In this work,
the theory of projecting the multigroup neutron scattering cross section onto Legendre
polynomials is first discussed in Section 2. Then cross section generation methodologies
of the fast reactor cross section generator MC2-3 and the Monte Carlo neutron transport
code Serpent 2 are compared in Section 3. Results are presented based on multigroup cross
sections generated from MC2-3 and Serpent 2 in Section 4. Finally, conclusions are made in
Section 5 based on the comparison of the methods and their respective results.
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2 Theory

To understand the importance and proper treatment of anisotropic neutron scattering, the
underlying phenomena must be understood. Based on this understanding, numerical
treatments may be derived. The following subsections discuss the nature and numerical
representation of neutron scattering anisotropy.

2.1 Nature of Anisotropic Neutron Scattering

In this work, anisotropy in the neutron scattering cross section is due solely to material
properties. That is, the angular dependence of the neutron scattering cross section is treated
as a property of an isotope and is attributable to physical laws. It can be demonstrated
that isotopes with low atomic mass will cause the greatest degree of anisotropic neutron
scattering [5]. This is known to be a significant challenge in light water reactor (LWR)
simulations where the coolant/moderator contains a significant fraction of 1H. However,
anisotropic scattering in materials common to fast reactors has not been investigated as
extensively [6]. It is also known that anisotropic neutron scattering has strong dependence
on incident neutron energy and therefore the effect of anisotropic neutron scattering may be
compounded in fast reactor systems.

Alternatively, the angular dependence of the neutron scattering cross section could be used
to describe macroscopic neutron transport behavior. For example, using an equivalence
technique similar to SuPer Homogenization (SPH), one could develop a method by which
neutron streaming effects were described by an angularly dependent neutron scattering cross
section [7, 8]. Such a method would allow for the preservation of neutron streaming typically
lost during spatial homogenization. However, this method is not considered here and all
models considered have their geometries represented exactly without spatial homogenization.

2.2 Numerical Treatment of Anisotropic Neutron Scattering

Attention will be focused on the discretization of the angular dependence of the neutron
flux and the doubly-differential neutron scattering cross section. Allow Ψ(r,E,Ω̂) to be the
continuous form of the neutron flux at spatial position r with energy E and direction Ω̂. The
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flux can then be projected onto spherical harmonics functions, Y m,n(Ω̂), as

Ψ(r,E,Ω̂) =
∞

∑
n=0

2n+1
2

n

∑
m=−n

Ψ
m,n(r,E)Y m,n(Ω̂) (1)

where Ψm,n(r,E) are the coefficients of the expansion that satisfy the relationship

Ψ
m,n(r,E) =

∫
4π

Ψ(r,E,Ω̂)Y m,n(Ω̂) dΩ̂. (2)

The expansion coefficients, Ψm,n(r,E), are also termed the moments of the flux. Note that
in practice, the infinite series in Eq. (1) will be truncated at some finite order such that
n = 1, . . . ,N.

For the angular dependence of the neutron scattering cross section, allow

Σs(r,E ′→ E,Ω̂′→ Ω̂)

to be the doubly-differential neutron scattering cross section at spatial position r for neutrons
scattering from energy E ′ to energy E and from direction Ω̂′ to direction Ω̂. Then the
neutron scattering cross section can be written in terms of the cosine of the scattering angle,
µ0 = Ω̂′ · Ω̂, as Σs(r,E ′→ E,µ0).

The angular dependence of the scattering cross section can be projected onto the set of
Legendre polynomials as

Σs(r,E ′→ E,µ0) =
∞

∑
n=0

2n+1
2

Σ
n
s (r,E

′→ E)Pn(µ0) (3)

where Pn(µ0) are the Legendre polynomials and Σn
s (r,E ′→ E) are the expansion coefficients

such that
Σ

n
s (r,E

′→ E) =
∫ 1

−1
Σs(r,E ′→ E,µ0)Pn(µ0) dµ0. (4)

Similar to the terminology for the moments of the flux, the Legendre expansion coefficients
in Eq. (3) are termed the moments of the neutron scattering cross section. For n > 0,
Σn

s (r,E ′→ E) is also known as a higher-order neutron scattering cross section.

In the transition from high-order models, where Σs(r,E ′→ E,Ω̂′→ Ω̂) is treated explicitly
using a scattering law, to reduced-order models, the moments of the neutron scattering cross
section must be obtained. There are two general methods for calculating Σn

s (r,E ′→ E).
First, the scattering probability distribution function, f (r,µ0,E ′), can be estimated and
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used to calculate the expansion coefficients using ENDF data. Alternatively, the expansion
coefficients themselves can be estimated using Eq. (4).

Both methods for estimating f (r,µ0,E ′) and directly estimating Σn
s (r,E ′→ E) have been im-

plemented in Monte Carlo methods [4]. In deterministic calculations, estimating f (r,µ0,E ′)
is not possible as the scattering function typically requires a tallying procedure to estimate.
However, in deterministic calculations, the moments of the neutron flux can be calculated
directly, which helps to simplify the calculation in Eq. (4). It is worth noting that the ENDF
file format uses the form of

f (µ0,E ′) =
N

∑
n=0

2n+1
2

an(E ′)Pn(µ0) (5)

where the scattering function is a function of both neutron scattering angle, µ0, and incident
neutron energy E ′. The spatial dependence of the scattering function in Eq. (5) has been
suppressed as ENDF data is isotopic data for general geometries. In the ENDF data structure,
Legendre polynomial expansion coefficients, an(E ′), are stored [9].
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3 Comparison of Methodologies

The generation higher-order neutron scattering cross sections is investigated in computer
programs applicable to fast reactors. Deterministic computer programs such as MC2-3 and
CENTRM have the ability to generate appropriately weighted higher-order neutron scattering
cross sections for fast systems [1, 10]; Monte Carlo computer programs such as Serpent 2
and MCNP can also perform similar functions [11, 12]. In the present study, MC2-3 and
Serpent 2 are considered.

3.1 MC2-3 Methodology

MC2-3 is a multigroup cross section generation code for fast reactor analysis developed by
Argonne National Laboratory (ANL) [1]. While newer versions of the computer program
may provide capabilities for simplified geometric models, these are not typically used in
practice. Instead, MC2-3 is used for cross section condensation in infinite homogeneous
media and is coupled to TWODANT, which solves the discrete ordinates neutron transport
equations [13]. The TWODANT solution is then used to calculate the moments of the flux,
Ψm,n(r,E), from Eq. (1) for simplified, two-dimensional geometries. The typical flow of
calculations as described in the MC2-3 User’s Manual is provided in Fig. 1.

The cross section generation process begins with the calculation of the moments of the
flux using the discrete ordinates solution from TWODANT and the MC2-3 Ultrafine Group
(UFG) energy structure (2,082 groups). The flux moments from TWODANT are then used
to perform the group condensation from the UFG structure to an arbitrary user-specified
Broad Group (BG) structure (typically 33 groups). Given the moments of the flux from
Eq. (1), the group condensation of the moments of the neutron scattering cross section can
be expressed as

Σ
n
G′→G(Ω̂) =

∑g∈G ∑g′∈G′ Σ
n
g′→g(∑

n
m=−n Ψ

m,n
g′ Y m,n(Ω̂))

∑
n
m=−n Ψ

m,n
G′ Y m,n(Ω̂)

(6)

where g is the UFG index, G is the BG index, and the notation g ∈ G implies the summation
over all UFGs that are contained within the Gth BG. In Eq. (6) the dependence on spatial
position, r, has been suppressed as the group condensation in MC2-3 is performed in an
infinite-homogeneous medium using the flux moments spectra from TWODANT. Note that
the denominator of Eq. (6) is the multigroup neutron flux moment that has been condensed
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Figure 1: Ultrafine Group (UFG) to Broad Group (BG) Group Condensation in MC2-3
Using Two-Dimensional Transport Solutions [1].
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as
Ψ

m,n
G = ∑

g∈G
Ψ

m,n
g . (7)

The resulting moment of the neutron scattering cross section in Eq. (6) is angularly dependent,
which is undesirable. As such, the group condensation is performed with the flux moments
as

Σ
m,n
G′→G =

∑g∈G ∑g′∈G Σn
g′→gΨ

m,n
g′

Ψ
m,n
G′

(8)

where the resulting Σ
m,n
G′→G is no longer dependent on angle but is now dependent on the

spherical harmonics rather than Legendre polynomials. However, as

m =−n,−n+1, . . . ,0, . . . ,n−1,n

there are 2n + 1 possible combinations for the expression of Eq. (8). In the MC2-3
implementation, all moments of the flux are weighted equally as

Σ
n
G′→G =

∑g∈G ∑g′∈G′ Σn
g′→g(∑

n
m=−n

∣∣∣Ψn,m
g′

∣∣∣)
∑

n
g′∈G′(∑

n
m=−n

∣∣∣Ψn,m
g′

∣∣∣) (9)

where |·| represents the absolute value and is necessary as the higher-order moments of the
flux may be negative.

The implementation in MC2-3 as in equation Eq. (9) is promising as it contains information
from all available moments of the flux. However, the quality of the MC2-3 formulation is
directly related to the accuracy of the moments of the flux as calculated by TWODANT.
This requirement of using TWODANT is quite strict as the computer program only supports
simplified, two-dimensional geometries. In reactor applications, this often results in
approximating a sodium-cooled fast reactor (SFR) with hexagonal geometry in a cylindrical,
r-z model. While the angular dependence of the moments of the neutron scattering cross
section is treated well, the restrictive geometric descriptions available in TWODANT may
be a poor approximation.

3.2 Serpent 2 Methodology

Calculation of multigroup scattering moments of neutron scattering cross sections via Monte
Carlo techniques is notoriously difficult. As shown in the MC2-3 methodology from Eq. (9),
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the multigroup condensation of the neutron scattering moments should be weighted with
the energy spectra of the moments of the flux. However, moments of the flux are typically
not available in Monte Carlo calculations. It has been suggested that if the neutron current
(first moment) were tallied using a Monte Carlo technique, statistical convergence would be
challenging due to the high degree of symmetry in nuclear reactor geometries [2]. Naturally,
Monte Carlo calculations and tallying particle weights are inherently related to the scalar
flux (zeroth moment) and this presents an open challenge for the generation of higher-order
moments of the neutron scattering cross section using such methods. The potential problem
of performing the calculation of the moments of the scattering cross section using the scalar
flux is that the energy spectra of higher-order moments need not be closely related to the
energy spectrum of the scalar flux. However, it has been demonstrated elsewhere that these
energy spectra are typically similar for LWR simulations [4].

Redmond implemented a method to calculate higher-order neutron scattering moments using
the scalar flux as calculated in the computer program MCNP-4C [4]. The method proposed
by Redmond can be written

Σn
s,G′→G =

∫ 1
−1(

∫ EG+1
EG

∫ EG′+1
EG′

∫
∆V φ(r,E ′)Σs(r,E ′) f (E ′→E,µ0) dr dE ′ dE)Pn(µ0) dµ0∫ EG′+1

EG′
∫

∆V φ(r,E ′) dr dE ′
(10)

where φ(r,E) is the scalar flux and ∆V is a volume within the calculation domain.

While Eq. (10) does use the energy spectrum associated with the scalar flux rather than
higher-order moments of the flux, the implementation was validated in a series of three test
problems designed to simulate LWR conditions [4]. It was demonstrated that the calculation
of higher-order neutron scattering cross sections as in Eq. (10) provided consistent results
betweenMonte Carlo and deterministic transport calculations. In the test problems, scattering
moments were calculated for n = {0,1,3,5,7} and accuracy improved significantly with
increasing scattering order, n, until n = 3, at which point any additional improvements were
negligible. However, these test problems all contained significant fractions of 1H (up to
98 at.%) which is known to demonstrate significant anisotropic neutron scattering. The
results of Redmond may not extend to fast reactor materials or geometries.

The calculation of higher-order scattering moments in Serpent 2 is implemented in a method
similar to Eq. (10) [11, 14]. Concern has been expressed with this implementation due
to the dependence on the scalar flux [2]. Additionally, the implementation in Serpent 2
has not been verified in previous literature. This work seeks to address the calculation of
higher-order scattering moments using Serpent 2.
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4 Results

A test problem is developed to compare the methodologies for generating higher-order
moments of the neutron scattering cross section techniques in MC2-3 and Serpent 2. The
test problem is then evaluated in Rattlesnake, a deterministic, neutral particle transport code
developed at Idaho National Laboratory (INL) [15]. With Rattlesnake, the test problem is
evaluated using higher-order neutron scattering cross sections generated from both MC2-3
and Serpent 2 for Pn scattering order n = {0,1,3,5,7}. All cross sections are based on
ENDF/B-VII.0 data as this is the most up-to-date cross section library available in MC2-3
[1]. Additionally, the “ANL33” 33-group energy structure common to fast reactor analysis
and implemented in MC2-3 is selected for the generation of multigroup cross sections.

4.1 Test Problem Description

To demonstrate the effects of higher-order neutron scattering cross sections, a one-dimensional
test problem was designed to exacerbate the effects of anisotropic neutron scattering with
materials common to SFR designs. The materials selected are metallic uranium enriched to
10 wt.% 235U alloyed with 10 wt.% zirconium (U-10Zr), metallic sodium, and HT9 stainless
steel [16, 17]. Number densities for these materials are provided in Tables A.1, A.2, and A.3
respectively.

Previous literature has demonstrated that “deep penetration” of fast neutrons can exacerbate
the effects of anisotropic neutron scattering due to the highly anisotropic neutron flux [18,
19]. Such deep penetration is desirable for comparison of methodologies for the generation of
higher-order neutron scattering cross sections. A geometry demonstrating deep penetration
is one in which fast neutrons are adjacent to a highly streaming medium such as air. The large
neutron mean-free-path through such a medium results in a strong angular dependence of
the neutron flux. To compare the methodologies of MC2-3 and Serpent 2, a one-dimensional
test problem has been developed that demonstrates deep penetration, as shown in Fig. 2. The
fuel region is adjacent to a large sodium region which is nearly transparent to neutrons at
fast energies. Deep penetration is observed within the large steel region near the problem
boundary as many mean-free-paths of steel are included.
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Figure 2: Description of Test Geometry.

A Neumann boundary condition is applied at the left of the problem (z = 0 cm) as

Ψ(0 cm,E,µin) = Ψ(0 cm,E,µout), for
µin = {µ | µ > 0},

µout = {µ | µ < 0},
(11)

where µ≡ cosθ is the cosine of the polar angle and this simplification is possible due to the
choice of one-dimensional geometry. A vacuum boundary condition is applied at the right
of the problem (z = 100 cm) as

Ψ(100 cm,E,µ) = 0 for µ < 0. (12)

Due to the large fraction of steel adjacent to the boundary in the test geometry, the results
are insensitive to the boundary condition near z = 100 cm.

4.2 Monte Carlo Results

Results from the continuous energy Serpent 2 model are presented in Fig. 3 and Fig. 4.
In both figures, error bars are negligible compared to line widths. The eigenvalue was
determined to be λ = 1.02898±6.0×10−5; this is used as a reference value for subsequent
comparisons. The flux in the fuel has high mean energy, as may be expected. The flux begins
to thermalize in the sodium and the large absorption resonance of 23Na at approximately
1 keV can be observed in Fig. 3. Thermalization then continues in the steel, but flux in the
steel is low due to significant absorption.

10
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Figure 3: Flux Spectra from Continuous Energy Serpent 2 Model.

The thermalization and scattering can also be observed in Fig. 4. Fast flux peaks in the fuel,
thermalization begins in the sodium, and the steel acts as a strong absorber. It is observed in
Fig. 4 that the flux is attenuated approximately exponentially in the steel due to absorption.

4.3 Rattlesnake Comparison Results

Multigroup cross sections were generated using both MC2-3 and Serpent 2 for use in
Rattlesnake. In Serpent 2, multigroup macroscopic cross sections were generated by solving
the continuous energy neutron transport equation in the exact geometry and tallying neutron
interactions and particle weights. In MC2-3, multigroup microscopic cross sections were
generated by solving the multigroup neutron transport equation with 1,042 energy groups, S8
Gauss-Chebyshev quadrature, and 200 spatial cells to represent the problem geometry. The
multigroup microscopic cross sections from MC2-3 were then mixed within Rattlesnake to
calculate macroscopic cross sections. Then both sets of cross sections were used to simulate
the test problem described in Section 4.1 using Rattlesnake.
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Figure 5: Spatial and Angular Refinement Study.

A preliminary step was to determine the number of spatial elements and number of discrete
angles required for a converged model. A refinement study was conducted using Rattlesnake
and beginning with 10 elements (∆z = 10 cm) and S2 Gauss-Chebyshev quadrature. The
Serpent 2 multigroup cross sections were used, the scattering order was held constant at P7,
and the eigenvalue error was measured relative to the continuous energy Monte Carlo result.
Results from the refinement study are presented in Fig. 5. The refinement study shows that
the multigroup transport solution agrees with the continuous energy Monte Carlo solution to
approximately 144 pcm (1 pcm= 1 × 10−5). From the results presented in Fig. 5, it was
determined that a spatial refinement of three in Rattlesnake (corresponding to 80 elements
and ∆z = 1.25 cm) and S6 quadrature would be used for all subsequent results. The results
in Fig. 5 shows that due to the simplified geometry, the problem converges quickly in space
and angle.

After the refinement study, the effects of the higher-order neutron scattering cross sections
were investigated. Rattlesnake is used to calculate the eigenvalue in the deep penetration test
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Table 1: Eigenvalue Results from Rattlesnake using Serpent 2 and MC2-3 Cross Sections.

Pn Order Rattlesnake/Serpent 2
Rattlesnake/Serpent

Error pcm Rattlesnake/MC2-3
Rattlesnake/MC2-3

Error pcm

P0 1.053552 2457.2 1.064405 3542.5
P1 1.026624 -235.6 1.035212 623.2
P3 1.027437 -154.3 1.035953 697.3
P5 1.027453 -152.7 1.035962 698.2
P7 1.027454 -152.6 1.035964 698.4
Ref. 1.02898±6.0pcm

problem using cross sections generated with Serpent 2 (Rattlesnake/Serpent) and generated
with MC2-3 (Rattlesnake/MC2-3). Then the scattering order, n, is varied in Rattlesnake for
n = {0,1,3,5,7} and the error is computed relative to the continuous energy Monte Carlo
results. Results from the scattering order investigation are presented in Table 1.

The results in Table 1 show that agreement in eigenvalue improves with increased scattering
order as one may expect. Additionally, these results indicate that P0 neutron scattering
cross sections are unacceptable to describe the angular dependence of neutron scattering
in this test problem. Typically, P0 neutron scattering cross sections would not be used
and transport-corrected P0 (TCP0) cross sections are used instead. The results presented
demonstrate that P1 neutron scattering cross sections significantly improve the agreement of
the resulting eigenvalue in the test problem. Table 1 indicates that P3 neutron scattering cross
sections offer additional improvement in the solution. Any neutron scattering of order higher
than P3 represents negligible change in the solution to the deep penetration test problem.

It is observed that the converged Rattlesnake/MC2-3 results agree to the Monte Carlo
Serpent 2 results to approximately 700 pcm. This is acceptable for this test problem but
may merit future investigation. It is suggested that this discrepancy is due to the different
processing of ENDF/B-VII.0 data in Serpent 2 and MC2-3. Additional processing steps
are required to prepare data for the MC2-3 UFG libraries and MC2-3 employs the narrow
resonance approximation [1].

In previous literature, a similar study of a one-dimensional geometry with fast reactor
materials demonstrated similar results [6]. In the other work, it was observed that the
scattering behavior was largely described by P1 neutron scattering cross sections with small
improvement provided by P3 neutron scattering cross sections.

14



5 Conclusions

For the deep penetration test problem in Section 4, it has been demonstrated that P3 neutron
scattering cross sections are sufficient for describing the angular dependence of neutron
scattering in typical fast reactor materials. Neutron scattering of order higher than P3
has negligible effect on the results of the deep penetration test problem presented. The
convergence of higher-order scattering cross sections generated by both MC2-3 and Serpent 2
agrees well for increasing scattering order.

Despite concerns expressed in Section 3 regarding the methodology employed inMonte Carlo
calculation of higher-order neutron scattering cross sections, the approximation employed
in Serpent 2 as in Eq. (10) appears useful for certain simulations. In addition to the LWR
test problems demonstrated by Redmond, the deep penetration fast reactor test problem in
Section 4 shows satisfactory agreement between the cross section generation methodologies
employed in Serpent 2 and MC2-3. The results of the deep penetration test demonstrated
that Serpent 2 can reasonably be used to generate higher-order neutron scattering moments
through at least P3 and for fast reactor materials.

Though the theory supporting the methodology in MC2-3 is favorable, MC2-3 is restricted
by the requirement of calculating the flux moments using TWODANT. The choice must be
made whether the higher-order scattering effects or geometric effects will dominate. For the
simplified deep penetration model here, both cross section generation options are satisfactory
as TWODANT can exactly represent the geometry. However, for realistic reactor geometries,
it is expected that geometric effects will dominate any higher-order scattering effects and
cross section generation with Serpent 2 may be preferable.

5.1 Future Work

In the future, thework presented heremay be extended tomore general fast reactor simulations.
The first step of this is to investigate the effects of more complex geometries. As for the
geometric restrictions in TWODANT, ANL reports that their Method of Characteristics
(MOC) neutron transport computer code, PROTEUS, can be used instead of TWODANT in
association with MC2-3 to describe more general reactor geometries. This improvement is
expected to be released in a future version of MC2-3.
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Future work may also include the investigation of higher-order neutron scattering in
association with the Simplified Pn (SPN) equations. The SPN equations are simpler to solve
than the neutron transport equation and are often preferred for fast reactor simulations.
Incorporation of higher-order neutron scattering into a fast reactor SPN calculation may offer
improved fidelity in a commonly employed, reduced-order reactor model.
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Acronyms

ANL Argonne National Laboratory.
BG Broad Group.
INL Idaho National Laboratory.
LWR light water reactor.
MOC Method of Characteristics.
pcm percent-mille (10−5).
SFR sodium-cooled fast reactor.
SPN Simplified Pn.
SPH SuPer Homogenization.
TCP0 transport-corrected P0.
UFG Ultrafine Group.
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A Material Compositions

All materials listed are present in the ENDF/B-VII.0 library. All cross sections are tabulated
at a temperature of 300 K.

Table A.1: Fuel Material Number Densities for U-10Zr with 10 wt.% 235U.

Nuclide ZAID MC2-3 Density 1
barn·cm

235U 92235 U235_7 3.643269×10−3

238U 92238 U238_7 3.237526×10−2

90Zr 40090 ZR90_7 5.366310×10−3

91Zr 40091 ZR91_7 1.170262×10−3

92Zr 40092 ZR92_7 1.788770×10−3

94Zr 40094 ZR94_7 1.812759×10−3

96Zr 40096 ZR96_7 2.920441×10−4

Table A.2: Sodium Material Number Density.

Nuclide ZAID MC2-3 Density 1
barn·cm

23Na 11023 NA23_7 4.644867×10−2
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Table A.3: HT9 Stainless Steel Material Number Densities.

Nuclide ZAID MC2-3 Density 1
barn·cm

50Cr 24050 CR50_7 4.861123×10−4

52Cr 24052 CR52_7 9.374191×10−3

53Cr 24053 CR53_7 1.062958×10−3

54Cr 24054 CR54_7 2.645927×10−4

92Mo 42092 MO92_7 7.499119×10−5

94Mo 42094 MO94_7 4.674316×10−5

95Mo 42095 MO95_7 8.044877×10−5

96Mo 42096 MO96_7 8.428929×10−5

97Mo 42097 MO97_7 4.825915×10−5

98Mo 42098 MO98_7 1.219365×10−4

100Mo 42100 MO1007 4.866342×10−5

182W 74182 W182_7 3.509658×10−5

183W 74183 W183_7 1.886672×10−5

184W 74184 W184_7 4.039666×10−5

186W 74186 W186_7 3.748294×10−5

58Ni 28058 NI58_7 2.811366×10−4

60Ni 28060 NI60_7 1.082933×10−4

61Ni 28061 NI61_7 4.707436×10−6

62Ni 28062 NI62_7 1.500937×10−5

64Ni 28064 NI64_7 3.822443×10−6

V 23000 V____7 2.378942×10−4

C 6000 C____7 8.078776×10−4

54Fe 26054 FE54_7 4.340659×10−3

56Fe 26056 FE56_7 6.813907×10−2

57Fe 26057 FE57_7 1.573628×10−3

58Fe 26058 FE58_7 2.094210×10−4
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